9 research outputs found

    Microbial populations are shaped by dispersal and recombination in a low biomass subseafloor habitat

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, R., Graham, E., Huber, J., & Tully, B. Microbial populations are shaped by dispersal and recombination in a low biomass subseafloor habitat. MBio, 13(4), (2022): e0035422, https://doi.org/10.1128/mbio.00354-22.The subseafloor is a vast habitat that supports microorganisms that have a global scale impact on geochemical cycles. Many of the endemic microbial communities inhabiting the subseafloor consist of small populations under growth-limited conditions. For small populations, stochastic evolutionary events can have large impacts on intraspecific population dynamics and allele frequencies. These conditions are fundamentally different from those experienced by most microorganisms in surface environments, and it is unknown how small population sizes and growth-limiting conditions influence evolution and population structure in the subsurface. Using a 2-year, high-resolution environmental time series, we examine the dynamics of microbial populations from cold, oxic crustal fluids collected from the subseafloor site North Pond, located near the mid-Atlantic ridge. Our results reveal rapid shifts in overall abundance, allele frequency, and strain abundance across the time points observed, with evidence for homologous recombination between coexisting lineages. We show that the subseafloor aquifer is a dynamic habitat that hosts microbial metapopulations that disperse frequently through the crustal fluids, enabling gene flow and recombination between microbial populations. The dynamism and stochasticity of microbial population dynamics in North Pond suggest that these forces are important drivers in the evolution of microbial populations in the vast subseafloor habitat.This work was supported by NSF OCE-1062006, OCE-1745589, and OCE-1635208 to J.A.H. The Gordon and Betty Moore Foundation sponsored observatory components at North Pond through grant GBMF1609. The Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564) supported J.A.H. and B.J.T. This is C-DEBI contribution 598

    APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocarcinoma identified by gene expression profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>5-Fluorouracil(5FU) and oral analogues, such as capecitabine, remain one of the most useful agents for the treatment of colorectal adenocarcinoma. Low toxicity and convenience of administration facilitate use, however clinical resistance is a major limitation. Investigation has failed to fully explain the molecular mechanisms of resistance and no clinically useful predictive biomarkers for 5FU resistance have been identified. We investigated the molecular mechanisms of clinical 5FU resistance in colorectal adenocarcinoma patients in a prospective biomarker discovery project utilising gene expression profiling. The aim was to identify novel 5FU resistance mechanisms and qualify these as candidate biomarkers and therapeutic targets.</p> <p>Methods</p> <p>Putative treatment specific gene expression changes were identified in a transcriptomics study of rectal adenocarcinomas, biopsied and profiled before and after pre-operative short-course radiotherapy or 5FU based chemo-radiotherapy, using microarrays. Tumour from untreated controls at diagnosis and resection identified treatment-independent gene expression changes. Candidate 5FU chemo-resistant genes were identified by comparison of gene expression data sets from these clinical specimens with gene expression signatures from our previous studies of colorectal cancer cell lines, where parental and daughter lines resistant to 5FU were compared. A colorectal adenocarcinoma tissue microarray (n = 234, resected tumours) was used as an independent set to qualify candidates thus identified.</p> <p>Results</p> <p>APRIL/TNFSF13 mRNA was significantly upregulated following 5FU based concurrent chemo-radiotherapy and in 5FU resistant colorectal adenocarcinoma cell lines but not in radiotherapy alone treated colorectal adenocarcinomas. Consistent withAPRIL's known function as an autocrine or paracrine secreted molecule, stromal but not tumour cell protein expression by immunohistochemistry was correlated with poor prognosis (p = 0.019) in the independent set. Stratified analysis revealed that protein expression of APRIL in the tumour stroma is associated with survival in adjuvant 5FU treated patients only (n = 103, p < 0.001), and is independently predictive of lack of clinical benefit from adjuvant 5FU [HR 6.25 (95%CI 1.48-26.32), p = 0.013].</p> <p>Conclusions</p> <p>A combined investigative model, analysing the transcriptional response in clinical tumour specimens and cancers cell lines, has identified APRIL, a novel chemo-resistance biomarker with independent predictive impact in 5FU-treated CRC patients, that may represent a target for novel therapeutics.</p

    BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation

    No full text
    Metagenomics has become an integral part of defining microbial diversity in various environments. Many ecosystems have characteristically low biomass and few cultured representatives. Linking potential metabolisms to phylogeny in environmental microorganisms is important for interpreting microbial community functions and the impacts these communities have on geochemical cycles. However, with metagenomic studies there is the computational hurdle of ‘binning’ contigs into phylogenetically related units or putative genomes. Binning methods have been implemented with varying approaches such as k-means clustering, Gaussian mixture models, hierarchical clustering, neural networks, and two-way clustering; however, many of these suffer from biases against low coverage/abundance organisms and closely related taxa/strains. We are introducing a new binning method, BinSanity, that utilizes the clustering algorithm affinity propagation (AP), to cluster assemblies using coverage with compositional based refinement (tetranucleotide frequency and percent GC content) to optimize bins containing multiple source organisms. This separation of composition and coverage based clustering reduces bias for closely related taxa. BinSanity was developed and tested on artificial metagenomes varying in size and complexity. Results indicate that BinSanity has a higher precision, recall, and Adjusted Rand Index compared to five commonly implemented methods. When tested on a previously published environmental metagenome, BinSanity generated high completion and low redundancy bins corresponding with the published metagenome-assembled genomes

    Molecular analyses of microbial abundance and diversity in the water column of anchialine caves in Mallorca, Spain

    Get PDF
    Water column samples from the island of Mallorca, Spain were collected from one site in Cova des Pas de Vallgornera (Vallgornera) and three sites (Llac Martel, Llac Negre, and Llac de les DelĂ­cies) in Coves del Drac (Drac). Vallgornera is located on the southern coast of Mallorca approximately 57 km southwest of Coves del Drac. Drac is Europe\u27s most visited tourist cave, whereas Vallgornera is closed to the public. Water samples were analyzed for water chemistry using spectrophotometric methods, by quantitative PCR for estimated total abundance of microbial communities, and by length heterogeneity PCR for species richness and relative species abundance of Archaea, Bacteria, and microbial eukaryotes. Estimated total abundance was multiplied by relative species abundance to determine the absolute species abundance. All sites were compared to determine spatial distributions of the microbial communities and to determine water column physical and chemical gradients. Water quality and community structure data indicate that both Drac DelĂ­cies and Drac Negre have distinct biogeochemical gradients. These sites have communities that are similar to Vallgornera but distinct from Drac Martel, only a few hundred meters away. Drac Martel is accessible to the general public and had the most dissimilar microbial community of all the sites. Similarities among communities at sites in Drac and Vallgornera suggest that these two spatially separated systems are operating under similar ecological constraints

    290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology

    No full text
    The Tara Oceans Expedition has provided large, publicly-accessible microbial metagenomic datasets from a circumnavigation of the globe. Utilizing several size fractions from the samples originating in the Mediterranean Sea, we have used current assembly and binning techniques to reconstruct 290 putative draft metagenome-assembled bacterial and archaeal genomes, with an estimated completion of ≄50%, and an additional 2,786 bins, with estimated completion of 0–50%. We have submitted our results, including initial taxonomic and phylogenetic assignments, for the putative draft genomes to open-access repositories for the scientific community to use in ongoing research

    Aquifer Discharge Drives Microbial Community Change in Karst Estuaries

    No full text
    Karst estuaries are unique systems governed by freshwater inputs that flow directly to the sea through karst conduits and/or matrices. Because they are found at the interface between terrestrial and marine environments, they can act as sentinels to climate change and as indicators of aquifer health. The physical and geochemical gradients formed in karst estuaries are a direct result of the interactions between inland hydrological conditions and sea level. To examine the influence these gradients have on microbial communities in the water column and sediment of a karst estuary, we studied the spring-fed Double Keyhole Karst Estuary in west central Florida for a 2-year period. Four sites were monitored within this system starting at the Double Keyhole Spring Conduit extending 2 km west through the estuary toward the Gulf of Mexico. Water column and sediment samples were collected quarterly at all sites from September 2011 through September 2013. Archaeal, bacterial, and microbial eukaryote communities were analyzed using quantitative PCR and length-heterogeneity PCR. The biological communities were analyzed in the context of hydrological, physical, and geochemical parameters in order to determine which factor(s) governed the observed changes of microbial abundance and richness. The major finding of this study was that microbial community change in this karst estuary was primarily driven by the volume of aquifer discharge and associated physical gradients, and less by the geochemical fluctuations within the system

    Importance of mobile genetic element immunity in numerically abundant Trichodesmium clades

    No full text
    The colony-forming cyanobacteria Trichodesmium spp. are considered one of the most important nitrogen-fixing genera in the warm, low nutrient ocean. Despite this central biogeochemical role, many questions about their evolution, physiology, and trophic interactions remain unanswered. To address these questions, we describe Trichodesmium pangenomic potential via significantly improved genomic assemblies from two isolates and 15 new >50% complete Trichodesmium metagenome-assembled genomes from hand-picked, Trichodesmium colonies spanning the Atlantic Ocean. Phylogenomics identified ~four N2 fixing clades of Trichodesmium across the transect, with T. thiebautii dominating the colony-specific reads. Pangenomic analyses showed that all T. thiebautii MAGs are enriched in COG defense mechanisms and encode a vertically inherited Type III-B Clustered Regularly Interspaced Short Palindromic Repeats and associated protein-based immunity system (CRISPR-Cas). Surprisingly, this CRISPR-Cas system was absent in all T. erythraeum genomes, vertically inherited by T. thiebautii, and correlated with increased signatures of horizontal gene transfer. Additionally, the system was expressed in metaproteomic and transcriptomic datasets and CRISPR spacer sequences with 100% identical hits to field-assembled, putative phage genome fragments were identified. While the currently CO2-limited T. erythraeum is expected to be a ‘winner’ of anthropogenic climate change, their genomic dearth of known phage resistance mechanisms, compared to T. thiebautii, could put this outcome in question. Thus, the clear demarcation of T. thiebautii maintaining CRISPR-Cas systems, while T. erythraeum does not, identifies Trichodesmium as an ecologically important CRISPR-Cas model system, and highlights the need for more research on phage-Trichodesmium interactions.ISSN:2730-615
    corecore